【解答】解:(1)由题意得:AP=2t,BQ=t,则BP=12-2t,分两种情况:①如图1,当∠PQB=90°时,过A作AD⊥BC于D,∵AB=AC,∴BD=CD=12BC=12×6=3,由勾股定理得:AD=122-32=315,∵PQ∥AD,∴BQBD=PQAD,∴t3=PQ315,∴PQ=15t,由勾股定理得:(12-2t)2=t2+(15t)2,解得:t1=-6(舍),t2=2;②如图2,当∠BPQ=90°时,过C作CD⊥AB于D,设AD=x,则BD=12-x,由勾股定理得:AC2-AD2=BC2-BD2,则122-x2=62-(12-x)2,解得:x=212,∴AD=212,BD=12-212=32,∴CD=BC2-BD2=62-(32)2=3152,∵PQ∥CD,∴BQBC=PQCD,∴t6=PQ3152,∴PQ=154t,由勾股定理得:t2=(12-2t)2+(154t)2,解得:t1=487>6(舍),t2=163,综上所述,当t=2或163时,△PBQ是直角三角形;(2)如图3,过P作PE⊥AC于E,过M作MD⊥BC于D,由(1)得:PE2t=315212,MD2t=31512,∴PE=154t,MD=152t,∴y=S△ABC-S△APM-S△QCM,=12×6×315-12AM•PE-12QC•MD,=915-12(12-2t)×154t-12(6-t)×152t,=152t2-315t+915(0≤t≤6);(3)存在,由题意得:152t2-315t+915915=1318,解得:t1=1,t2=5;(4)如图4,当PM∥BC,QM∥AB时,四边形PBQM为平行四边形,∵AB=AC,∴∠B=∠C,∵PM∥BC,∴∠APM=∠B,∠AMP=∠C,∴∠APM=∠AMP,∴AP=AM,∴2t=12-2t,t=3,∴四边形PBQM在变化过程中能成为平行四边形,此时t的值为3.